

"Working on Mars"

Understanding How Scientists, Engineers and Rovers Interacted Across Space and Time during the Mars Exploration Rover Mission

Roxana C. Wales, Ph.D.
SAIC
NASA Ames Research Center

- Launched: June/July 2003
- Landed: January 2004
- Run for NASA by Jet Propulsion Lab (JPL) in Pasadena, CA. Ames contributed to the mission.
- Mission run on Mars time (Martian sol = 24:39 in Earth time)
 - · Solar powered rovers
 - Sunlight and daytime temperatures for cameras and other instruments
 - Objective: search for evidence of past water
- Work Cycle
 - Activity Planning for rover work and batch of commands sent every sol for rover execution on the next sol
 - Nominal mission lifetime 90 sols per rover, spanning four months January thru April

Overview

- · Description of
 - Ethnographic Methods for MER
 - "Mission" Ethnography
 - Assessing a Work System
- Overview of a MER work day
- Scientists, Engineers and Rovers Working "on" Mars
 - Facilities
 - Communicating with a rover on Mars
 - Earth time, Mars time and Keeping track of time

3

Ethnographic Methods for MER

- Data collection and analysis of:
 - field notes from in-situ observation and participation
 - video and photos
 - documents and artifacts
 - information created in software
 - system interactions between tools
 - information exchanged in meetings
 - nature of individual and group work
 - Interviews (formal and informal)
 - Email information and exchanges

Data
Data
Data

"Mission" Ethnography at NASA

Rules of Mission ethnography:

- If you have a badge and are taking up room in meetings or tests, you must contribute and add value.
- 2. Launch, landing and surface operations will meet the mission timeline whether you contribute or not.
- 3. Feedback that is late is useless; input on software development, systems integration and training must meet the above timelines.
- 4. Mission personnel will remember if you contributed or not and this will influence their future interactions with you. (See 1 above)
- 5. Processes and Procedures will be re-worked into the mission. They are the only thing that does not have a freeze and change control limitations.

- Work System Analysis
 - What is the organizational structure? How do people access, display and share information?
 - What tools do people use?
 - What's in the software? What should be in the software?
 - How do people communicate?
 - What are the described processes (work process) vs. actual work (work practice)
 - What are the breakdowns and disconnects? What is the rework?
 - When and where are decisions made? Who is responsible for what?
 - How do the facilities support the work?
 - Rooms, work stations, tables, chairs, printers, projection screens
 - What is missing?
 - Minimal support of standard information sharing formats: ex: Copiers and Printers not easily accessible, etc.

MER Mission Timeline

Activity Name

10 11 12 13 14 15 16 17 14 13 20 21 22 23 0 1 1 2 3 4 5 6 7 8 9

DE

Nay1 The Rose Operation

Pro-Commission Sequence Pan Review

Durint Sol Sequence Pan Review

Pro Sol Sequence Pan Review

Pro Sol Sequence Pan Review

Real-Time Monitoring

Daily/ "Soly" Timeline for Work, Planning and Commanding

Day/Sol split into two phases:

Downlink: Receive data from Uplink: Prioritize, constrain, plan the rover, do health validation and rover activity. Generate, validate, data product generation. Decide on and transmit commands to the rover and generate science plan requests **Activity Plan Generation** and Commanding Defining the plan of rover work and Turning it into commands ~ 14 hrs and Planning Interpretation of data products and planning for next day ~ 8 hrs

Facilities Design

- Where is this work done?
- How do you support tele-robotic science that must know what is happening on Mars?
- How do you support collaboration?
- What are some of the more interesting ways in which the facilities contribute to the work?

Communicating Across Teams and with the Rover-The Problem

- Problem: how do you convey information across teams and to a rover, when:
 - participants speak different technical languages
 - focus on different issues
 - have different tasks
 - use different software tools
 - must communicate from humans to a robot
- Not just an academic exercise, the answer influenced mission software design

Communicating Across Teams and with the Rover- An Answer

- Answer: Identify a naming convention that describes the work and
 - allows for natural language discussion
 - identifies components that are relevant to all teams Ex: instrument such as Pancam or RAT
 - identifies both the activity and the object on which the work will be done Ex: Pancam on Feature
 - identifies formalized concepts Ex: kind of activity
 - carries across software tools
 - can be translated into work for the rover
 - Ex: Pancam_surveyaround_Adirondack

Earth Time, Mars Time, Keeping Track of Time

- Martian sol = 24:39 minutes in Earth time
- Mission works on Mars Time
- Participants report at the same time on every Martian sol: 12:00 hrs.
 - But to do that they have to keep track of ever changing Earth date, hour and minute
 - Report to work 39 minutes later every day in Earth time: 12:00, 12:39, 13:18, 13:57, 14:36 etc
 - Schedules help keep track

19

Earth Time, Mars Time, Keeping Track of Time

MER A				
Date [PDT] @ PDL Shift Start	1/5/04 15:08	1/6/04 15:48	1/7/04 16:27	1/8/04 17:07
Approx. Sol	3	4	5	6
Pancam PEL	. JBe	JBe	JJo	JJo
Pancam PDL	MLe	MLe	RMo	WFa
Pancam PDA	JSo	FSe	FSe	MJo
Pancam PDA2	MWo	WFa	MJo	JSD
Pancam PUL	. JPr	JPr	HAr	HAr
Pancam PUL2	EMc	MBM	JPr	MBM

Courtesy of MER Pancam Team and J. Bell

Earth Time, Mars Time, Keeping Track of Time

- · Keep track of time meant knowing:
 - LST for each mission (local solar time on Mars at each site)
 - Relationship between LST A and LST B (twelve hours and 20 sols apart)
 - Relationship between LST and PST (what time it is in the "outside" world)
 - UTC (Universal Time Coordinated for radiating commands to Mars)
 - Military time (for aligning Earth and Mars time work within the mission)
 - Time in other Earth time zones (for scientists working with people at home institutions)
 - Relationship between Sol (1, 2, 3) and Earth date (1/5/04)

21

Earth Time, Mars Time, Keeping Track of Time

Earth Time, Mars Time, Keeping Track of Time

Quote found written on white board by MER participant :

What time is it in reality?